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sically-based approach for estimating critical variables describing land surface
vegetation canopies, relying on remotely sensed data that can be acquired from operational satellite sensors.
The REGularized canopy reFLECtance (REGFLEC) modeling tool couples leaf optics (PROSPECT), canopy
reflectance (ACRM), and atmospheric radiative transfer (6SV1) model components, facilitating the direct use
of at-sensor radiances in green, red and near-infrared wavelengths for the inverse retrieval of leaf chlorophyll
content (Cab) and total one-sided leaf area per unit ground area (LAI). The inversion of the canopy reflectance
model is constrained by assuming limited variability of leaf structure, vegetation clumping, and leaf
inclination angle within a given crop field and by exploiting the added radiometric information content of
pixels belonging to the same field. A look-up-table with a suite of pre-computed spectral reflectance
relationships, each a function of canopy characteristics, soil background effects and external conditions, is
accessed for fast pixel-wise biophysical parameter retrievals. Using 1 m resolution aircraft and 10 m
resolution SPOT-5 imagery, REGFLEC effectuated robust biophysical parameter retrievals for a corn field
characterized by a wide range in leaf chlorophyll levels and intermixed green and senescent leaf material.
Validation against in-situ observations yielded relative root-mean-square deviations (RMSD) on the order of
10% for the 1 m resolution LAI (RMSD=0.25) and Cab (RMSD=4.4 μg cm−2) estimates, due in part to an
efficient correction for background influences. LAI and Cab retrieval accuracies at the SPOT 10 m resolution
were characterized by relative RMSDs of 13% (0.3) and 17% (7.1 μg cm−2), respectively, and the overall intra-
field pattern in LAI and Cab was well established at this resolution. The developed method has utility in
agricultural fields characterized by widely varying distributions of model variables and holds promise as a
valuable operational tool for precision crop management. Work is currently in progress to extend REGFLEC to
regional scales.

Published by Elsevier Inc.
1. Introduction

Remotely sensed data in the reflective optical domain function as a
unique cost-effective source for providing spatially and temporally
distributed information on key biophysical and biochemical para-
meters of land surface vegetation. Leaf area index (LAI), defined as the
single sided leaf area per unit horizontal ground area, is a critical
structural variable for understanding biophysical processes of vegeta-
tion canopies and for quantifying exchange processes of energy and
matter between the land surface and lower atmosphere (Moran et al.,
1995; Norman et al., 1995; Anderson et al., 2005; Doraiswamy et al.,
2004). Measurements of total leaf chlorophyll content (Cab), defined as
the sum of the contents of chlorophyll a and chlorophyll b per unit leaf
area, can assist in determining photosynthetic capacity and produc-
tivity (Boegh et al., 2002; Gitelson et al., 2006; Nijs et al., 1995). Leaf
uborg).

nc.
chlorophyll is a good indicator of vegetation stress (Carter 1994;
Penuelas & Filella, 1998; Gitelson & Merzlyak, 1997), it is strongly re-
lated to leaf nitrogen content (Filella et al., 1995; Daughtry et al., 2000;
Yoder & Pettigrew-Crosby, 1995) and could therefore prove valuable
for precision crop management (Moran et al., 1997).

Remote sensing techniques for estimating vegetation character-
istics from reflective optical measurements have either been based on
the empirical–statistical approach that links vegetation indices (VI)
and vegetation parameters using experimental data, or on the in-
version of a physical canopy reflectance (CR) model. The empirical
approach is simple and computationally efficient, and the potential of
empirical VI relationships for the determination of crop parameters
has been demonstrated in numerous studies (e.g. Broge & Mortensen,
2002; Colombo et al., 2003; Gitelson et al., 2005; Tucker, 1980). How-
ever, a fundamental problem with the VI approach is its lack of
generality. The shape and form of canopy reflectance spectra depend
on a complex interaction of several internal (e.g. vegetation structure,
leaf biochemical composition, soil background) and external (e.g.
view-sun-target geometry, atmospheric state) factors (Baret, 1991)
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that may vary significantly in time and space and from one crop type
to another. As a consequence, there is no unique relationship between
a sought vegetation parameter and a VI of choice, but rather a family of
relationships, each a function of canopy characteristics, soil back-
ground effects and external conditions (Baret & Guyot, 1991; Colombo
et al., 2003; Gobron et al., 1997; Haboudane et al., 2004; Houborg et al.,
2007a; Zarco-Tejada et al., 2003).

Physically-basedmodelshaveproven to be apromisingalternative as
they describe the transfer and interaction of radiation inside the canopy
based onphysical laws and thus provide an explicit connection between
the biophysical variables and the canopy reflectance. Different strategies
have beenproposed for the inversion of thesemodels including iterative
numerical optimization methods (e.g. Jacquemoud et al., 1995, 2000),
look-up table approaches (e.g. Combal et al., 2002a; Knyazikhin et al.,
1998; Weiss et al., 2000) and artificial neural network methods (e.g.
Bacour et al., 2006; Fang & Liang, 2005; Walthall et al., 2004; Weiss &
Baret, 1999); each associated with specific advantages and disadvan-
tages (Kimes et al., 2000). The iterative optimization approach facilitates
a direct retrieval of biophysical parameters from observed reflectances
without the use of calibration or training data of any kind, and Houborg
and Boegh (2008) presented a way to make this kind of inversion
computationally feasible at local to regional scales.

The inversion process is ill-posed by nature due to measurements
and model uncertainties and because different combinations of model
parameters may correspond to almost identical spectra (Combal et al.,
2002a; Atzberger, 2004). As a result, additional information is needed
to accurately estimate the vegetation parameters. While the use of a
priori knowledge (e.g. canopy type and architecture, model parameter
ranges) has been shown to be an efficient way to solve ill-posed inverse
problems (Combal et al., 2002a, 2002b; Koetz et al., 2005; Qu et al.,
2007), this regularization technique typically relies on the existence
of experimental data collected at the site of interest. Using multiple
MODIS images, Houborg et al. (2007a) demonstrated how the tempo-
ral evolution of LAI could be utilized as another way of regularizing the
inverse problem. Atzberger (2004) proposed an entirely image-based
regularization technique that incorporates radiometric information
from neighboring pixels during model inversion. It was shown that
the so-called “object signatures” contained real supplementary infor-
mation, which helped to regularize the inverse problem (Atzberger,
2004). Houborg and Boegh (2008) reported good LAI and Cab retrieval
accuracies using a related image-based regularization strategy that
assumed invariance of drymatter content, vegetation clumping and leaf
angle distribution within well-defined land cover classes.

This paper proposes a number of important refinements to the
biophysical parameter retrieval scheme described in Houborg and
Boegh (2008). The focus here is on the field-scale applicability of the
refined model whereas a future paper will evaluate the model utility at
regional scales. In the original model, the atmospheric correction of
the sensor radiances was performed independent of the CR modeling
assuming Lambertian reflectance of the land surface. In reality, surface
anisotropic effects can be significant (Kimes & Sellers, 1985) and the
atmospheric correction should take into account these non-Lambertian
surface boundary conditions to be consistent with the directional ca-
nopy reflectance spectra required as input to a multidirectional CR
model (Verhoef & Bach, 2003). This is addressed here by coupling the
PROSPECT leaf optics model (Baret & Fourty, 1997; Jacquemoud & Baret,
1990) and the turbid medium Markov chain canopy reflectance model,
ACRM (Kuusk 1995, 2001) with a vector version of the 6S (Second
Simulation of the Satellite Signal in the Solar Spectrum) atmospheric
radiative transfer model (6SV1) (Kotchenova et al., 2006; Vermote et al.,
1997). Another improvement accommodates partially senescent vege-
tation. Canopies of exclusively green leaves were assumed in Houborg
and Boegh (2008) which will lead to large inaccuracies when applied to
a canopy with intermixing of green and senescent leaf material (Bacour
et al., 2002a). In this study the spectra of green and senescent leaves are
modeledusingPROSPECT. The correction for background effects has also
been improved; the methodology presented in Houborg and Boegh
(2008) required at least two satellite scenes to represent conditions of
dense green vegetation and bare soil, respectively for each land cover
class. In the refined model only an approximate first estimate of the
background reflectance signal from a nearby bare soil or partially
vegetated field is required as input to a novel pixel-wise soil correction
scheme,whichmakes the newmodel also applicable tomono-temporal
imagery. Additionally, prior information about the leaf inclination angle
is no longer a prerequisite.

The key objective of this study is to develop a method for reliable
biophysical parameter retrievals that 1) is entirely image-based, 2) does
not rely on difficult to obtain in-situ measurements, 3) can be applied at
a range of scales using radiometric spectral information from different
airborne and operational satellite sensor systems, and 4) can be used for
agricultural fields characterized by widely varying distributions of
model variables. Following Atzberger (2004) and Houborg and Boegh
(2008), the radiometric information content of pixels belonging to the
same field or land cover class is exploited assuming small intra-field
variability of leaf inclination angle distribution, leaf mesophyll structure
and Markov clumping characteristics. These field-specific parameters
are estimated by an iterative inversion technique using reflectance
observations characteristic of intermediate to dense vegetation coverage
(Houborg & Boegh, 2008). With the determination of the field-specific
parameters completed using regularized inverse modeling, pre-com-
puted look-up tables are accessed for fast pixel-wise parameter
estimations. New image-based techniques are introduced to further
regularize the inversion and to avoid confounding effects between the
soil background reflectance and the canopy variables.

The atmospheric radiative transfer and canopy reflectance models
are described in the next two sections followed by a detailed des-
cription of the integrated biophysical parameter retrieval tool. To
demonstrate the feasibility and reliability of the approach, the tool is
applied to a stressed corn field in Maryland, USA using 1 m resolution
aerial imagery and 10 m resolution SPOT-5 data. Finally the accuracy
of LAI and Cab retrievals is evaluated using in-situ data.

2. Atmospheric radiative transfer model

The vector version of the 6S (Second Simulation of the Satellite
Signal in the Solar Spectrum) atmospheric radiative transfer model
(6SV1) (Kotchenova et al., 2006; Vermote et al.,1997) is used to convert
at-sensor radiance to directional surface reflectance (Section 4). 6SV1
is an advanced radiative transfer code designed to simulate the
reflection of solar radiation by a coupled atmosphere-surface system
for awide range of atmospheric, spectral and geometrical conditions. It
was selected over competing models (e.g. MODTRAN) as bidirection-
ally reflecting surface conditions can be considered and the CR model,
ACRM (Section 3) is already built-in. The updated 6S code accounts for
radiation polarization and includes other significant updates, and has
demonstrated goodperformance (Kotchenova et al., 2006; Kotchenova
& Vermote, 2007). Collection 5 of the MODIS surface reflectance
dataset was produced using 6SV1 (http://6s.ltdri.org/). For the present
application, input parameters for 6SV1 include solar and sensor view
angle geometries: sun zenith (θs), view zenith (θv), and relative
azimuth (θraz) angles, total ozone content (O3), aerosol optical depth at
550 nm (τ550), total precipitable water (TPW), and type of aerosol
model (τtype) (Table 1). The type of aerosol model (Continental, Urban,
Maritime and Desert) determines the aerosol volume and size
distributions, and an option is implemented to allowmixing of aerosol
models (Table 1). TPWcan be replaced by atmospheric profile data, but
an integrated value is generally sufficient especially for this applica-
tion, as it does not include spectral bands in the water-sensitive mid-
infrared wavelength region (Section 4).

Non-Lambertian ground conditions are considered in this implemen-
tation of 6SV1. The ground BRDF, required to determine the directional
effect of the target, is computed in 6SV1 following the Markov chain

http://6s.ltdri.org/


Table 1
Input parameters required to run REGFLEC (see Section 5.2 for a description of the
external input parameters)

Parameters Units Symbol Range or fixed value

External/atmospheric parameters
Aerosol optical depth (at 550 nm) τ550 0.23
Total precipitable water vapor g cm−2 TPW 3.51
Total ozone content cm–atm O3 0.378
Aerosol model τtype 40,60,0,0a

Sun zenith angle (°) θs 23.35
Relative azimuth angle (°) θv 144.1
View zenith angle (°) θraz 22.01

Canopy structure parameters
Leaf area index LAI 0–9
Markov clumping parameter Sz 0.4–1.0
Hot spot parameter SL 0.5/LAI
Mean leaf inclination angle (°) θl 40–70
LAI of the ground level LAIg 0.05
Fraction of senescent leaves fB 0–1

Soil parameters
Weight of the first price function s1 0.05–0.5

Leaf biochemical constituents
Chlorophyll a+b content μg cm−2 Cab 10–90
Leaf equivalent water thickness cm Cw 0.02
Dry matter content g m−2 Cm 50
Brown pigments Cbp 0,3 b

Leaf mesophyll structure N 1–2.5

For the initial 6SV1 run, the ground BRDF was calculated by parameterizing the canopy
parameters as the midpoints of the effective ranges.

a For the aerosol model (τtype), the values [40,60,0,0] indicate the percentage of
aerosols characterized by Continental, Urban, Maritime and Desert aerosol size/type
distributions, respectively.

b Cbp=0: green leaves (no light absorption by brown pigments), Cbp=3: represents
yellow leaves.
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canopy reflectance model, ACRM (Kuusk 1995, 2001) (Section 3). The
consideration of directional effects is believed to be important due to
significant non-Lambertian scattering properties of vegetation surfaces
(Kimes & Sellers, 1985) and the directional influence of many model
parameters on the canopy reflectance (Bacour et al., 2002a). Additionally,
key vegetation parameters like leaf chlorophyll change due to relatively
subtle differences in canopy reflectance (e.g. Daughtry et al., 2000).

3. Canopy reflectance model

The turbidmediumMarkov chain canopy reflectancemodel, ACRM
(Kuusk 1995, 2001) incorporatesMarkov properties of stand geometry
making it applicable to plant canopies largely made up of vertical
elements such as corn (Kuusk, 1995). ACRM assumes the canopy
consists of a homogeneous layer of vegetation and a thin layer of
vegetation on the ground surface. The model operates in the spectral
domain 400–2500 nm and calculates directional canopy reflectance at
a spectral resolution of 1 nm. The model inputs are listed in Table 1.
The angular distribution of leaves is described by the model leaf
inclination (θm) and the eccentricity (eL) in accordance with an
elliptical leaf angle distribution (LAD). However as a simplification, the
mean leaf inclination angle (θl) is used in this study to parameterize
both θm and eL in accordance with an ellipsoidal LAD (Campbell,
1990), which implies considering only planophile and erectophile
model leaf orientations (θm=0 and θm=90, respectively). The Markov
clumping parameter (Sz) was set to vary between a value of 0.4,
representing a significantly clumped plant canopy, and 1.0, represent-
ing a homogeneous canopy of randomly positioned leaves. The model
accounts for non-Lambertian soil reflectance and soil reflectance
spectra are approximated as a function of four basis vectors, which
were sufficient to describe the spectral variability of reflectance
spectra from more than 500 soils (Price, 1990). In REGFLEC, however,
the third and fourth vectors are set equal to zero and the second vector
is tied to the first vector (s1), which explains most of the spectral
variability in the soil reflectance (Price, 1990). Additionally, the spe-
cular reflection of direct solar radiation of leaves and the hot spot
effect are accounted for. Since the model sensitivity to the hot spot
parameter, SL, is generally very low for view directions away from the
hot spot direction (Bacour et al., 2002b), it was roughly parameterized
as a function of LAI according to Verhoef and Bach (2003). The ACRM
calculation of the relative proportion of direct and diffuse flux in
incoming radiation was replaced by the wavelength-dependent
diffuse fraction computed by 6SV1.

In ACRM, the spectra of leaf reflectance and transmittance are
computed using the most recent version of the leaf optics model
PROSPECT (Baret & Fourty, 1997; Jacquemoud & Baret, 1990). In this
five-variable PROSPECT model, leaf scattering is described by the leaf
mesophyll structure parameter N (the effective number of elementary
layers inside a leaf) and a tabulated wavelength-dependent refractive
index of the leaf surface wax. The calculation of leaf absorption
depends on the chlorophyll a and b content (Cab), the equivalent water
thickness (Cw), the dry matter content (Cm), and leaf brown pigment
(Cbp) (Table 1). The setting of Cw is not important since leaf water has
no effect on the reflectance in the visible and near-infrared wavebands
(Houborg et al., 2007a). The effect of Cm is predominantly in
wavelengths longer than 1200 nm (Botha et al., 2007; Houborg et al.,
2007a), and was set to a fixed value of 50 g m−2 in agreement with the
average value obtained during the Leaf Optical Properties Experiment
(LOPEX'93) (Hosgood et al., 1995). Brown pigments appear when
leaves senesce and represent light absorption by non-chlorophyll
pigments. Cbp may vary between 0 (no light absorption) and ~6 (max.
light absorption). In this study, green and senescent leafmaterialswere
assumed to be dissociated and assigned fixed Cbp values of 0 and 3,
respectively. The leaf mesophyll structure and leaf chlorophyll content
of senescent leaf material were fixed to 2.5 and 0 μg cm−2, respectively.
Reflectance spectra representative of intermixed green and senescent
leaf material was then simulated by weighing PROSPECT leaf reflec-
tance and transmittance spectra for green (Cbp=0) and senescent leaf
material (Cbp=3) with a new input parameter, the canopy fraction of
senescent leaves (fB).

In this study, the inversion of ACRM for the retrieval of two ormore
model parameters involves minimizing the residuals between ob-
served canopy reflectance (ρj⁎) and simulated canopy reflectance (ρj)
according to the merit function:

χ = ∑
m

j = 1

ρT
j −ρj

ej

 !2

+∑wi ð1Þ

Here εj is the reflectanceuncertaintyestimate andm is the number of
the measured reflectance values. The second term is included to avoid
non-physical values of input parameters (see Table 1 for allowable
range values); if the parameter falls within the given boundaries,wiwill
have a value of zero, else a penalty value is assigned to wi. The Powell
minimization technique is used to solve themulti-dimensional function
(Kuusk, 2003).

4. REGularized canopy reFLECtance modeling tool

The REGularized canopy reFLECtance (REGFLEC) modeling tool
(Fig. 1) integrates the atmospheric radiative transfer (Section 2) and
leaf optics and canopy reflectance (Section 3) models and combines
iterative and look-up table based inversion techniques for the retrieval
of key biophysical properties (LAI and Cab). Input parameters to the
model include remotely sensed at-sensor radiance observations in
green, red, and near-infrared wavelengths, atmospheric state para-
meters to describe atmospheric scattering and absorption character-
istics and solar and sensor view angle geometries (Fig.1). The REGFLEC
retrieval scheme can be described as a 4 step procedure as displayed in
Fig. 1 and explained in detail in four separate sections below.



Fig. 1. A schematic diagram of the coupled PROSPECT-ACRM-6SV1 regularized biophysical
parameter retrieval tool (REGFLEC). Parameter descriptions are given in the text.
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4.1. At-sensor radiance to surface reflectance conversion (step 1)

The first step in REGFLEC (Fig.1) involves the conversion of at-sensor
radiances in green, red and near-infrared wavebands to directional
surface reflectance using 6SV1 (Section 2). Since the atmospheric
correction routine is coupled to the leaf biochemical and canopy
biophysical characteristics of the surface, 6SV1 is re-run after surface
characteristics are updated by the inversion process (Fig. 1). For the
initial 6SV1 run, ACRM is parameterized with default settings of the
inputparameters (Table 1), usinganominal value of LAI that is calculated
according to Campbell and Norman (1998) as a function of fraction of
vegetation cover (fc) reported by Choudhury et al. (1994) as a function of
the normalized difference vegetation index (NDVI)

LAI = −2 ln 1−fcð Þ ð2Þ

fc = 1−
NDVImax−NDVIi

NDVImax−NDVImin

� �0:6

Here NDVIi is the NDVI of an individual pixel and NDVImax

and NDVImin are the maximum and minimum NDVI of the image,
respectively.
4.2. Look-up table generations (step 2)

Fast pixel-wisemappingoperations (Section 4.4) are facilitated using
a look-up table (LUT) based inversion approach. The LUTs, generated by
running ACRM in forward mode with input of site-specific view-sun
angles, contain a suite of simulated LAI–ρnir, LAI–NDVI, Cab–ρgreen, and
fB–RGVI relationships resembling a wide parameter distribution space
(Table 1), where

NDVI =
ρnir−ρred

ρnir + ρred
; RGVI =

ρred−ρgreen

ρred + ρgreen
ð3Þ

and ρgreen, ρred and ρnir represent simulated surface reflectances in
green, red and near-infrared wavelengths. The LUTs are multidimen-
sional arrays where the number of dimensions is determined by the
numberof parameters that have an impact on the given relationship. For
instance, LAI–NDVI relationships (simulated by ACRM) are impacted by
variations in Cab,N, Sz, fB, θl and s1 (Houborg et al., 2007a), whichmake a
7 dimensional LAI–NDVI LUT, as a relationship must be stored for all
possible combinations of each Cab, N, Sz, fB, θl and s1 entry. The LAI–ρnir
LUT on the other hand only consists of 6 dimensions as leaf chlorophyll
has no effect outside the visible spectrum (Houborg et al., 2007a).

The look-up tables are computed for 16 LAI, 13 Cab and 7 θl values
evenly distributed across the parameter ranges (Table 1) in addition
to 3 N values (1.0, 1.8, 2.5), 2 Sz values (0.4, 1.0), 3 s1 values (0.05, 0.3,
0.5) and 6 fB, values (0,0.2,0.4,0.6,0.8,1.0). The LUTs are only
computed for a few entries of the latter four parameters (i.e. N, Sz,
s1, fB) to reduce the computational demand of the LUT generation.
Values of Cab, N, Sz, fB, θl and s1 must be known in order to access LUT
stored LAI–NDVI relationships. Conversely, knowledge of LAI, N, Sz,
fB, θl and s1 is required to access LUT stored Cab–ρgreen relationships.
If derived parameter values of N, Sz, s1 and fB fall in between their
respective LUT parameter entries, the given reflectance relationship
(e.g. LAI–NDVI) is approximated by linearly interpolating between
the relationships of the bounding parameter entries. Spectral
relationships derived using this interpolation technique were
found to closely match relationships simulated directly using
ACRM and significantly increased the computational speed.

4.3. Field specific parameter retrievals (step 3)

ACRM is here applied in iterative inverse mode, by minimizing the
Eq. (1)merit function, for the estimation of canopy and leaf parameters
assumed spatially invariant within a given crop field (i.e. Sz, N and θl).

Regularization techniques have been implemented since a simulta-
neous (pixel-wise) retrieval of ACRM parameters using iterative
optimization methods is unfeasible for a number of key reasons:
1) due to the ill-posed nature of model inversion, different parameter
settings are likely to yield identical spectra (Weiss et al., 2000; Jac-
quemoudet al., 2000), especiallywhen several parameters are estimated
simultaneously (Kuusk et al., 1997); 2) the expensive computational
requirement of iterative numerical optimization methods generally
makes pixel-wise parameter retrievals unfeasible (Kimes et al., 2000;
Houborg & Boegh, 2008); and 3) the solution is highly dependent on the
initial settings of the model parameters, which may result in optimiza-
tion at a local minimum instead of the global minimum in RMSD
between observed and modeled reflectances (Jacquemoud et al., 2000;
Botha et al., 2007).

The regularization techniques implemented in REGFLEC include:

1) REGFLEC contains an option to include prior knowledge of θl and
fix it for the specific field. If this knowledge is unavailable, θl is kept
as a free parameter.

2) The inversion is run using only the spectral information content
from pixels with an intermediate to high vegetation coverage
(NDVI N0.65), thereby maximizing the sensitivity of the reflectance
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signal to the leaf and canopy variables while reducing the influence
of the background reflectance signal.

3) Rather than inverting the image pixel by pixel, the radiometric
information of pixels belonging to the same crop field is exploited
by assuming limited variability of N, Sz, θl, and fB within the given
field, which facilitates iterative model inversion of multiple pixels
at the same time. While fB is initially assumed constant for these
high vegetation density pixels (NDVI N0.65), a pixel-wise disag-
gregation of fB occurs in step 4 (Section 4.4).

4) An average value of s1 is initially assumed to represent all pixels
considered in the inversion. s1 is fixed as the average of s1 derived for
low vegetation density pixels (LAI b0.5) (bare plot within field or
nearby sparsely vegetated field) by inversion of ACRM (using Eq. (1))
with default vegetation parameter values (Table 1). Due to the
reduced sensitivity of the reflectance observations to background
effects at intermediate to high density vegetation coverage (see
Section 4.4), consideration of pixel-wise variability in s1 is less im-
perative at this stage in themodeling process. In the LUT-based stage
of REGFLEC (step 4, Fig. 1), a pixel-wise correction for background
effects is implemented (Section 4.4).

Furthermore, a pre-screening technique is used to determine the N,
Sz, θl and fB parameter space to be considered in the iterative model
Fig. 2. Spectral reflectance simulated by ACRM model with fixed field specific parameters (N
Cab and fB. Nir and green reflectance, NDVI and RGVI vegetation indices are depicted.
inversion. Thepre-screeninguses thepre-computed LUTs (Section4.2)
to find a limited number of realistic parameter combinations for the
given spectral reflectance dataset, and involves three steps that are
performedby looping through eachparameter combination (i.e.Ni, Sz,i,
θl,i and fB,i): a) For all pixels within a given field where NDVI N0.65, LAI
is simulated as a function of observed near-infrared reflectances using
the LAI–ρnir relationship (LUT) specific to the given parame-
ter combination. If the upper or lower LAI bound (see Table 1 for
allowable range) is reached formore than 2% of the pixels, the specific
parameter combination is regarded as unrealistic and therefore not
retained for the iterative inversion runs; b) Similarly spatialized leaf
chlorophyll estimates are generated as a function of observed green
reflectances, using the LAI estimates in a) to locate the appropriate
Cab–ρgreen LUT relationships, andCab out of range conditions tested for;
and c) If the retrieved LAI and Cab values are within their allowable
range (Table 1) for the majority of pixels (98%), the specific parameter
combination (i.e. Ni, Sz,i, θl,i and fB,i) is only assumed plausible if
the average value of fB calculated using the appropriate fB–RGVI
relationship is within fB,i±0.025. This test proved effective as the
RGVI exhibits a strong relationship with fB (Section 4.4).
ACRM is then inverted iteratively by minimizing Eq. (1) for multiple

pixels at the same time (i.e. pixels where NDVI b0.65) with LAI and Cab as
freevariables foreachof the remaining ‘realistic’parametercombinations.
=1.5, Sz=1.0, θl =57°) and view geometries (θv=20°, θs=30°, θraz=140°) and varying LAI,



Fig. 5. Timeseries of LAI and leaf chlorophyll as measured in field B (Fig. 3). The bars
represent the standard deviation of all the measurements made within field B. The
maximum and minimum measured leaf chlorophyll values are also shown. The arrows
indicate the time of John Deere (JD) and SPOT image acquisitions.

Fig. 4. The derived empirical SPAD–Cab relationship based on leaf samples collected
during the 2005 and 2007 experimental campaigns.

Fig. 3. The OPE3 study area with location of Cab, LAI, and nitrogen treatment field plots.
The corn field boundary is indicated by a dashed line. The imagery is a 1 m resolution
natural color mosaic acquired by John Deere Agri Services on July 21st.
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The set of N, Sz, θl and fB resulting in the lowest RMS deviation between
observed and simulated canopy reflectances is then assumed to apply to
the respective field.

ACRM has been optimized, using IDL vector operations, to make the
speed of the inversion largely independent of the number of pixels
considered. Currently, REGFLEC is arbitrarily set up to use the spectral
informationcontent fromaminimumof 250 randomly selectedpixels or
10% of all pixels within the specific land cover class satisfying the NDVI
criteria (NDVIN0.65). Only pixels completely surroundedbypixels of the
same field are included to avoid the use of mixed pixels. Additionally,
extreme values are avoided due to possible contamination.

4.4. Pixel-wise retrievals of LAI and Cab (step 4)

With the field-specific determination ofN, Sz and θl completed pixel-
wise estimates of LAI and Cab can be generated for the entire field using
the pre-computed look-up tables described in Section 4.2. The LAI–ρnir
LUT is reduced from amulti-dimensional array of 6 dependent variables
to only 2 dependent variables (fB and s1) while the Cab–ρgreen LUT is
reduced to a 3 dimensional array (LAI, fB and s1 being the dependent
variables) (Section 4.2).

Fig. 2 illustrates a sample of model generated spectral reflectance
relationships, stored in the pre-computed LUTs (Section 4.2) for a theo-
retical field (N=1.5, Sz=1.0, θl=57°, θv=20°, θs=30°, θraz=140°), demon-
strating the sensitivity of LAI, Cab and fB to various reflectance and
vegetation indexvalues. Fig. 2a illustrates the strong sensitivityof LAI–ρnir
relationships to variations in soil reflectance (s1) even for dense
vegetation as a result of high canopy penetration capabilities of ρnir.
The influence of fB on LAI estimation is only significant for fairly high
vegetation densities (Fig. 2b). While soil reflectance contributes to the
green reflectance signal at low vegetation densities (Fig. 2e), the inability
of radiometers operating in the green spectrum to sense through a leaf
layer (Lillesaeter, 1982) minimizes the effect of the background signal at
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intermediate vegetation densities (Fig. 2f). Moreover Cab–ρgreen relation-
ships are only affected by LAI variations at low to intermediate vegetation
densities (Fig. 2g). As expected, the sensitivity of ρgreen to changing leaf
chlorophyll content is reduced with increasing amount of senescent leaf
material (Fig. 2h). The lowsensitivity to thebackground reflectance signal
and LAI variations at intermediate to high vegetation densities are shared
by the fB–RGVI relationships (Fig. 2i–k).

Preliminary estimates of LAI and Cab are generated for every pixel
within the specific land cover class from the LAI–ρnir and Cab–ρgreen
LUTs using the land cover averaged values of fB and s1 (derived in the
iterative inversion step), as LUT entries. LAI is estimated first, then the
Cab–ρgreen relationship appropriate to the LAI of each pixel is applied
to estimate Cab (Fig. 2g). The preliminary LAI and Cab estimates are
then used to disaggregate fB spatially from relationships stored in the
fB–RGVI LUT (Fig. 2i–l).

It is evident fromFig. 2 that soil background effectsmay confound the
canopy signal when employing single spectral band relationships for
biophysical parameter estimations.While soil background influences can
also be detected in the LAI–NDVI relationships (Fig. 2c), the vegetation
index normalization reduces the dependency on s1 significantly. On the
other hand, the translation of spectral reflectance data into a vegetation
index often reduces the sensitivity to the parameter of interest. For
instance, the NDVI signal saturates at intermediate vegetation densities
(Fig. 2c and d) whereas ρnir remains responsive to changing leaf biomass
up to LAI ~6 (Fig. 2a). At lowto intermediate vegetation cover, amismatch
in LAI estimated usingρnir andNDVI, respectively ismost likely due to an
Fig. 6. REGFLEC derived maps of leaf chlorophyll (a) and LAI (b) for the corn field using 1 m res
erroneous s1 value (Fig. 2a and c). The LAI divergence between the two
estimates can be significant as theNDVI based LAI estimatewill only vary
by a maximum of approximately ±0.5 while LAI discrepancies of up to 5
(in addition to large negative LAI values) are likely for the ρnir based
estimates as a result of inaccurate s1 data (Fig. 2a and c). As the two LAI
estimates should coincide if the background effect is properly accounted
for, a pixel-wise correction for background effects was facilitated by
adjusting s1 to cause amatch between LAI values generated as a function
of ρnir and NDVI, respectively. The resulting map of s1 is then used to
update LAI, Cab and fB using the respective LUTs.

5. Field experiment

The REGFLEC tool was applied to remotely sensed reflectance
observations of a corn (Zea mays L.) crop field located within the
USDA-ARS Beltsville Agricultural Research Center, Maryland (39.02° N,
76.85°W). The study site is associated with the Optimizing Production
Inputs for Economic and Environmental Enhancement (OPE3)
program, and consists of four surface hydrologically bounded sub-
watersheds, about 4 ha each, which feed a wooded riparian wetland
and first-order stream. The watersheds were formed from sandy
fluvial deposits and have a varying slope ranging from 1% to 4% (for
further details see http://hydrolab.arsusda.gov/ope3/).

This study focuses on data collected during the 2007 growing season.
Leaf and canopy data were collected from early June, shortly after
corn emergence, to the beginning of August. The average daily mean
olution aircraft data as input. The background is the near-infrared 1m resolution image.

http://hydrolab.arsusda.gov/ope3/
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temperature for June and July was 22.3° and 24.2°, respectively and the
precipitationwaswell belowaverage fromaroundmid-June. This resulted
in significant crop drought stress in the latter part of the study period.

5.1. Biophysical measurements

Measurements of LAI and leaf chlorophyll were collected at weekly
intervals throughout the study period at 25field plots each having a size
of approximately 2 m×2m. Each plot was accurately geolocated using a
differential global positioning system. Supplementary data were
collected on August 1st at 6 larger plots (15 m×15 m) (Fig. 3) that
were geolocated using a handheld Global Positioning System (GPS) unit
(accuracy ≈4m). Additionally, 24 nitrogen treatment plots with a size of
9×26 mwere sampled (Fig. 3). Ammonium nitrate was applied shortly
after planting and on June 6th to supply 0%, 50%, 100%, and 200% of
the recommended rate of 140 kg N/ha and to establish a range of leaf
chlorophyll levels.

LAI was estimated non-destructively using a LAI-2000 instrument
(LiCor, USA).1 The LAI measurements were made shortly after sunrise,
shortly before sunset or during overcast conditions using a 270° view
cap to prevent interference caused by the operator's presence. Four
readings were made along diagonal transects between the rows as
suggested in the LAI-2000 manual for row crops, and repeated once
(8 below canopy readings in total). We have found that this mea-
surement protocol results in LAI values that are in good agreement
with the ‘true’ LAI (i.e. from destructive leaf sampling). In the 2×2 m
plots, the average of two LAI-2000 measurements (2×8 readings) was
used whereas the 15×15 m plots were represented as the average of 5
separate measurements (5×8 readings).

Leaf chlorophyll content was measured non-destructively with a
portable SPAD-502 Chlorophyll meter (Spectrum Technologies, Inc.).1

This instrument measures leaf transmittance at two wavelengths: red
(650 nm) where light absorbance by chlorophyll is efficient and near-
infrared (940 nm) where absorbance by chlorophyll is insignificant.
The SPAD-502 meter calculates a non-dimensional SPAD value (0–99)
according to

SPAD = k � log 10 T940
T650

ð4Þ

where T is the transmittance and k is a calibration coefficient
determined by the manufacturer (Uddling et al., 2007). The claimed
accuracy of the meter output is ±1 SPAD unit.

Six separate measurements with the SPAD-502 were made on each
leaf to properly describe the variability across the leaf. In each of the
2m×2m plots, the average of 18×6 SPAD readings was used, and in the
larger plots, the average of approximately 50×6 SPAD readings was
used. During the measurements the sensor head was shaded to avoid
direct sunlight from reaching the instrument. In stands with a mix of
green and senescent leaves, only the green leaves were measured.

In order to convert the unit-less SPAD values into absolute measures
of leaf chlorophyll, a relationship between leaf chlorophyll content and
SPAD values must be initially determined. For this purpose leaf
chlorophyll was measured spectrophotometrically in the laboratory
after extraction of chlorophyll with N,dimethyl sulfoxide (DMSO) (Well-
burn,1994). Since awide range of leaf chlorophyll contents is required for
establishing a reliable empirical fit, the derived SPAD–Cab relationship
(Fig. 4) is based on leaf samples collected during the 2005 and 2007
experimental campaigns. The relationship used to convert the SPAD-502
measurements into leaf chlorophyll content (μg cm−2) reads

Cab = 33:9042 � exp SPAD � 0:0196ð Þ−37:1544 RMSD = 4:1μg cm−2� � ð5Þ
1 Trade names are included for the benefit of the reader and do not imply an
endorsement of or a preference for the product listed by the U.S. Department of
Agriculture.
The exponential fit is in agreement with other studies that have
reported deviations from linearity in the high and low SPAD range
(Markwell et al., 1995; Richardson et al., 2002; Uddling et al., 2007).

5.2. SPOT reflectance observations

Radiance data in the green (500–590 nm), red (610–680 nm) and
near-infrared (780–890 nm) wavebands were acquired by the SPOT-5
High Resolution Geometric imaging instrument (HRG-2) on July 27th.
The SPOT-5 radiances were obtained in 10 m resolution at 12:13 p.m.
local time for a 30 km×30 km image swath. The level 2A SPOT data are
rectified to match a standard cartographic projection (UTM WGS84)
using cubic convolution resampling by default. The location accuracy is
better than 30m (www.spot.com). However, convolution resampling is
inappropriate for research applications like this since the convolution
averages neighboring pixels to provide a smoother appearance thereby
losing the original radiometric signal of the image pixels. To preserve the
information content of the individual pixels, image-to-image rectifica-
tion was applied to the level 1A product (no geometric corrections
performed) using the geolocated level 2A product as reference and a
nearest neighbor resampling technique. The geolocation accuracy was
further improved by matching the SPOT scene with the airborne imag-
ery described in Section 5.3.
Fig. 7. Validation of 1 m resolution leaf chlorophyll (a) and LAI (b) estimates using field
measurements collected within 2×2 m (circles) and 15×15 m (triangles) field plots. The
r2 value and the absolute and relative RMS deviation between estimates and
measurements are listed. The thick line is the 1:1 line.

http://www.spot.com
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The geometrically and radiometrically corrected radiances were
input to the coupled 6SV1-PROSPECT-ACRM (REGFLEC) radiative
transfer scheme (Section 4). The values used for the additional 6SV1
input parameters are listed in Table 1. The level 2.0 AErosol RObotic
NETwork (AERONET) aerosol optical depth (τ550) and total precipitable
water (TPW) data from the nearby NASA GSFC site were used (Holben
et al., 1998). Atmospheric ozone measurements (O3) were extracted
from theAtmospheric InfraRed Sounder (AIRS) level 2 standard retrieval
product that reports the atmospheric properties at a spatial resolutionof
45 km×45 km. If local sun photometer measurements are unavailable,
τ550 data from the Terra or AquaMODIS aerosol product (MOD/MYD04)
are a good alternative. Validation studies have suggested the expected
error over vegetated land surfaces to be represented by ±(0.05+0.15τ550)
(Remer et al., 2005; Vermote et al., 2002; Houborg et al., 2007b).
The AIRS TPW product has been validated with an uncertainty estimate
of 5–20% (http://disc.sci.gsfc.nasa.gov/AIRS/documentation.shtml), and
may be preferred over localized radiosonde observations that are only
available at widely separated sites and therefore may not be represen-
tative of the atmospheric conditions of the area to be mapped. For the
present study region, theMODIS derived τ550 (0.2) and the AIRS derived
TPW (3.71) are in good agreement with the sun photometer measure-
ments (Table 1).

5.3. Aerial imagery

An aerial digital image of the study region was acquired by John
Deere Agri Services on July 21st. The sensor system consists of four
12-bit digital cameras with a 1600 by 1200 pixel charge coupled
device (CCD). Digital image data in the green (510–580 nm), red
(610–690 nm) and near-infrared (800–900 nm) wavelength regions
were provided at a spatial resolution of 1 m and georegistered with a
horizontal accuracy of approximately ±1 m. Unfortunately, radio-
metric calibration coefficients for the conversion of digital counts to
radiances are not provided with the product. Instead the conversion
Fig. 8. A blow up of the 1 m resolution leaf chlorophyll map for the area containing the nitrog
to the nomenclature. The associated graph displays the average Cab within each of the 24 tr
to surface reflectance was facilitated by matching the digital counts
with the 6SV1 atmospherically corrected SPOT surface reflectances
for a set of carefully selected areas in the study region. This approach
is assumed viable since the SPOT and John Deere (JD) acquisitions
were only 6 days apart, and the selected areas experienced aminimal
change in LAI and leaf chlorophyll between the acquisitions (as
determined by field measurements). Band specific (green, red and
near-infrared) linear regression of the digital counts in the JD image
and the SPOT surface reflectances for the selected areas resulted in
correlations of determinations (r2) close to unity (0.98–0.995). The
regression equations were then used to convert all digital counts to
reflectance units.

6. Results

Fig. 5 illustrates the temporal progression of leaf chlorophyll and LAI,
measured in field B (Fig. 3), from approximately 3 weeks after leaf
emergence (day of year (DOY) 134) through corn tasseling and silking
(DOY 193) and a stage of leaf senescence. The average Cab of field B
initially increased from ~45 μg cm−2 to a peak value of ~57 μg cm−2 at
aroundDOY180. The LAImost likely peaked shortly hereafter but cannot
be verifieddue to the gap inmeasurements (Fig. 5). The onset of drought
conditions caused the average Cab to decrease continuously reaching a
minimum of ~35 μg cm−2 and an overall drop in LAI was also observed
during this time period. However, the degree of plant stress imposed by
extreme environmental conditions throughout much of July and the
beginning of August varied widely across field B, as illustrated by the
high standard deviations and observed Cab ranges of approximately 20–
70 μg cm−2 during peak stress conditions (Fig. 5). Both image
acquisitions occurred during a late stage of corn maturity where the
corn in many places was significantly stressed and in an advanced stage
of leaf senescence (Fig. 5). These conditions allow for model validation
over awide range in leaf chlorophyll content and for the complex case of
green leaf material intermixed with senescent material.
en treatment plots (see Fig. 3). Nitrogenwas applied onMay 17th and June 6th according
eatment plots sorted as a function of the nitrogen application rate.

http://disc.sci.gsfc.nasa.gov/AIRS/documentation.shtml
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6.1. LAI and leaf chlorophyll estimates (1 m resolution)

Fig. 6a and b illustrates the results of running REGFLEC with input of
1 m resolution spectral aircraft data. For these model runs the leaf
inclination angle was fixed to 60°, which was the average of the field
measurements obtained using the LAI-2000. The initial estimate of the
soil background signal (s1) (Section 4.3) was derived using reflectance
observations from a sparsely vegetated area in vicinity of the study area
(the bright area in the lower right corner of the study area — Fig. 3). The
pixel-wise estimates of Cab (Fig. 6a) were generated using a family of Cab–
ρgreen relationships, each being a function of corn specific characteristics
(N, Sz, θl), soil background reflectance signal (s1), fraction of senescent
material (fB) and LAI (see Section 4.4). The iterative inversion (Section 4.3)
resulted in avalue of 1.7 for the leafmesophyll structure parameter,N, and
avalue of 1.0 for theMarkovclumping parameter, Sz.Cab shows significant
spatial heterogeneity on this date, varying from 15–85 μg cm−2. The
northerly part of the field (field A) appears to be the least stressed with
most parts of the field havingCab values greater than 50 μg cm−2. HighCab
values tend to coincide with high amounts of leaf biomass while
significantly stressed areas generally have lower values of LAI (Fig. 6b).
However, LAI is here the total LAI and thus includes green as well as
senescent plant material. The LAI map was generated using LAI–ρnir
relationships specific to the cornfield (i.e.N=1.7, Sz=1.0, θl=60°) reflecting
pixel-wise variations in s1 and fB (Section 4.4).

Areas with high values of LAI and Cab generally correspond very
well with higher producing regions within the field as identified by
Fig. 9. REGFLEC derived maps of leaf chlorophyll (a) and LAI (b) using 10 m resolution
Gish et al. (2001). Gish et al. (2001) found a marked degree of
similarity in the spatial pattern of the higher producing regions for
two drought years and demonstrated that high yielding areas were
closely related with areas over subsurface flow pathways.

The accuracies of the Cab and LAI retrievals were evaluated by
comparison with data collected at the field plots depicted on Fig. 3.
The comparisons use the average value of a 2×2 and 15×15 pixel block
around the center of the small and large field plots, respectively. Cab
data collected at the small field plots on July 19th and July 27th and LAI
data collected at the same plots on July 13th and July 25th were
linearly interpolated to be concurrent with the aircraft overpass day
(July 21st). The August 1st data refer to samplings at the larger
(15×15 m) plots (Fig. 1). The model shows excellent capability in
reproducing the pattern in measured leaf chlorophyll (Fig. 7a) and LAI
(Fig. 7b) with an r2 of 0.89 and 0.85, respectively and a relative RMS
deviation of 9.8% and 10.2, respectively.

Leaf chlorophyll is highly correlated with leaf nitrogen, as much of
leaf nitrogen is incorporated in chlorophyll (Filella et al., 1995). A
closer look at the variability in Cab at the OPE3 nitrogen treatment
plots (see Fig. 3) is given in Fig. 8. Nitrogen was applied to each
rectangular area with rates of either 0 or 50 kg/ha on May 17th and 0,
70,140 or 280 kg/ha on June 6th. The estimated leaf chlorophyll values
generally discriminate the various nitrogen treatments well and an
increase in leaf chlorophyll levels with increasing nitrogen rates can
be clearly identified especially for the treatment plots in row 1 (Fig. 8).
The plots that received no nitrogen coincide with stressed areas
SPOT-5 data as input. The background is the 1 m resolution near-infrared image.
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characterized bymodeled Cab values on the order of 20–30 μg cm−2. In
contrast, an average leaf chlorophyll content of 59 μg cm−2 was
modeled for the plot in the upper left corner, which received
maximum rates of nitrogen application (Fig. 8). A perfect correspon-
dence between Cab and the nitrogen application rates is not observed
for all plots, which is expected in light of the additional plant stress
that may have been imposed by the extreme environmental
conditions that occurred after the last nitrogen treatment.

6.2. LAI and leaf chlorophyll estimates (10 m resolution)

Fig. 9a and b illustrates REGFLEC outputs of LAI and Cab derived
using 10 m resolution SPOT data. The corn-specific iterative inversion
results of N (1.73) and Sz (0.98) are comparable to those retrieved
using the aircraft data. While much of the fine-scale variability in the
parameters is lost at this resolution, the overall intra-field pattern in
LAI and Cab is well-established.

Comparing Cab measurements collected at the day of the SPOT
acquisition (July 27th) and 5 days later (August 1st) with estimates
extracted from the 10×10 m pixel closest to each field plot results in a
good agreement with a relative RMSD of 17.1% (Fig. 10a). The fit is
excellent for the large validation plots that were specifically designed
Fig.10. Validationof10mresolution leaf chlorophyll estimatesusing thepixelvalueclosest
to eachfield plot (a) or the bestmatching pixel value forfield plots locatedon the boundary
of two neighboring pixels (b). The validation data were collected at 2×2 m (circles) and
15×15 m (triangles) field plots. The r2 value and the absolute and relative RMS deviation
between estimates and measurements are listed. The thick line is the 1:1 line.

Fig. 11. Validation of 10 m resolution LAI estimates using the pixel value closest to each
field plot (a) or the best matching pixel value for field plots located on the boundary of
two neighboring pixels (b). The validation data were collected at 2×2 m (circles) and
15×15m (triangles) field plots. The r2 value and the absolute and relative RMS deviation
between estimates and measurements are listed. The thick line is the 1:1 line.
for validating the SPOT retrievals. The greater discrepancies observed
for some of the 2×2 m field plots are expected considering the large
sub-pixel variability in Cab at the 10 m scale (Fig. 6a). Fine-scale Cab
variability and small registration errors could easily cause the nearest
pixel value to be non-representative of the conditions at these field
plots. Fig. 10b illustrates the Cab validation results when the best
matching pixel values are used for field plots located on the boundary
of two neighboring pixels. The result is a significantly improved fit
characterized by an r2 of 0.91 and a relative RMS deviation of 9.7%.

The LAI validation results are shown in Fig. 11a and b. While LAI
appears to be less affected by the scale difference, the use of best
matching pixel values rather than the nearest pixel values (only for
field plots located on the boundary of two neighboring pixels), causes
an increase in accuracy from a relative RMS deviation of 13.3% to 10.2%
(Fig. 11). For these comparisons, LAI measurements collected at the
small field plots on July 25th and July 31st were linearly interpolated
to be concurrent with the SPOT overpass day (July 27th).

6.3. Canopy fraction of senescent material

An average value of fB, representative of ‘dense’ vegetation (NDVI N
0.65)pixel elements,wasderivedduring theREGFLEC iterative inversion
mode (Section 4.3). A spatial disaggregation of fB, for every pixel within
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the field boundary was facilitated by applying corn-specific fB–RGVI
relationships (Section 4.4). The generated 1m resolution fBmap (Fig.12)
indicates an advanced stage of canopy senescence in many parts of the
fieldwith anoverall average fB of approximately 0.35. The spatial pattern
follows quite closely the distribution of leaf chlorophyll content (Fig. 6a)
with areas of high Cab corresponding to low amounts of senescent leaf
material. Photographs of the corn field from a number of selected plots
illustrate quite variable amounts of senescent plant material and
demonstrate ability of the model for the delineation of horizontal
gradients in fB (Fig. 12). The photographs also illustrate the diversity
within the site in terms of plant density and degrees of plant stress.

6.4. Model parameter sensitivity

6.4.1. Leaf inclination angle
The above results were all generated using prior information to fix

the leaf inclination angle (set to 60° based on field measurements). θl is
an influential factor in visible and near-infrared reflectance spectra
(Bacour et al., 2002b) but is difficult to retrieve accurately from model
inversion since LAI and θl counterbalance each other (Baret & Guyot,
1991). Thismay cause different sets of LAI and θl to correspond to almost
identical spectral signatures. Atzberger (2004) demonstrated that
adjacent pixels belonging to the same crop field contain supplementary
spectral information, which helps reduce confounding effects between
Fig.12. REGFLEC derivedmap of 1m resolution canopy fraction of senescent vegetation (fB). P
zoomed view of the derived fB values around the area where the photographs were taken. (F
the web version of this article.)
LAI and θl. Intra-field radiometric information content is also exploited
in REGFLEC and there is an option to include θl as a free variable in the
iterative inverse mode (Section 4.3). Invoking the θl free mode for the
1m resolution aircraft data resulted in the following values for the class-
specific parameters: N=1.4, Sz=0.89 and θl=56°. The value of 1.4 for the
leaf mesophyll structure parameter is in agreement with the value
(N=1.41) derived in Haboudane et al. (2004) by inverting the PROSPECT
model on corn reflectance and transmittance spectra measured in the
laboratory, and the value used for corn plants by Jacquemoud et al.
(2000). The retrieved value of Sz (0.89) is at the high end of clumping
values reported by Demarez et al. (2008) using hemispherical photo-
graphs but is consistentwith clumping factors derived for amature corn
stand using techniques described in Li et al. (2005) and Anderson et al.
(2005), which account for effects of non-random leaf area distribution
characteristic of rowcrops. Verification of the LAI andCabmeasurements
against these new maps resulted in retrieval accuracies comparable to
those retrieved using prior information to fix θl (Table 2).

6.4.2. Soil background effects
Background reflectance can be a significant contributor to the can-

opy reflectance signal (Daughtry et al., 2000; Haboudane et al., 2004)
and care should be utilized to avoid confounding effects between vege-
tation parameters (e.g. fB, Cab and LAI) and the soil parameter, s1, es-
pecially at low vegetation coverage. A novel soil correction schemewas
hotographs of the corn plant from 4 selected plots (red flags) are also shown alongwith a
or interpretation of the references to color in this figure legend, the reader is referred to



Table 4
Sensitivity of 10 m resolution REGFLEC estimates of LAI and Cab to uncertainties in 6SV1
critical input parameters (aerosol optical depth and type of aerosol model)

SPOT data n Mean r2 RMSD RRMSD [%] Bias [%]

LAI Cab LAI Cab LAI Cab LAI Cab LAI Cab

τ550=0.31 2420 2.59 44.9 0.92 0.84 0.20 4.9 8.0 10.6 3.5 −3.8
τ550=0.15 2420 2.37 47.8 0.91 0.93 0.17 3.1 7.1 6.5 −4.2 2.4
Continental
aerosol model

2420 2.40 52.7 0.94 0.90 0.14 7.1 5.6 15.2 −3.0 12.8

Urban aerosol
model

2420 2.48 45.3 0.93 0.96 0.13 2.5 5.1 5.3 0.5 −2.9

The reference LAI and Cab data were generated using τ550=0.23 and an aerosol model
consisting of 40% continental and 60% urban. See Table 2 for definition of statistical
descriptors. n represents the total number of pixels included in the analysis (entire corn
field).

Table 2
Validation statistics of LAI and Cab as a result of running REGFLEC with θl fixed (using
the value derived from LAI-2000 measurements) and free (iterative inversion estimate
in parentheses)

Aerial
imagery

n Mean RMSD RRMSD [%] r2 Bias [%]

LAI Cab LAI Cab LAI Cab LAI Cab LAI Cab LAI Cab

θl fixed (60°) 31 28 2.5 45.1 0.25 4.4 10.1 9.75 0.85 0.89 0.3 1.2
θl free (56°) 31 28 2.4 44.8 0.23 5.2 9.5 11.6 0.89 0.87 −2.5 5.2

The root-mean-square deviation (RMSD), relative RMSD (RRMSD) and Bias is defined
below. r2 is the determination coefficient and n the number of measurements.

RMSD = ∑
n

i = 1
Pi−Oið Þ2=n

� �1=2
, RRMSD = RMSD

∑
n

i = 1
Oið Þ=n

� 100k, Bias = ∑
n

i = 1
Pi−Oið Þ=n.
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implemented to minimize the influence of within-field variability in
background reflectance on the estimation accuracy of the biophysical
parameter retrievals. An approximate estimate of s1, derived by model
inversion using reflectance spectra from a nearby soil field or partially
vegetated field, is required initially as input. The initial s1 estimate is
then adjusted iteratively during the inverse mode to provide a best fit
between modeled and measured reflectance spectra (Section 4.3).
Finally, a pixel-wise correction for background effects is facilitated by
adjusting s1 to produce a match between LAI values generated as a
function of ρnir and NDVI, respectively (Section 4.4). Ignoring intra-field
variations in soil reflectance (i.e. fixing s1 with the initial estimate
throughout the corn field) has a significant impact on the spatial
estimates of LAI and Cab (Table 3). The LAI estimates decrease uniformly
throughout the field (Bias=−9%) (Table 3). The effect on Cab varies
significantly from pixel to pixel as illustrated by a low inter-correlation
(r2=0.56) and high RMS deviation between the two maps of Cab
generated with the soil background correction turned on and off,
respectively (Table 3). Additionally, the upper and lower Cab bounds are
reached for 5%of thepixels (=11,400pixels) compared to only 0.5%when
variations in background reflectance are considered. More importantly,
theCab predictability is seen to deteriorate froma relative RMS deviation
of 10% and r2 of 0.89 to a relative RMS deviation of 25.8% and r2 of 0.21
(Table 3).

6.4.3. Atmospheric effects
Remotely sensed reflectance observations are not free of errors; the

transformation of sensor digital counts into surface reflectance values
will inevitable be associated with some degree of uncertainty (Combal
et al., 2002a). The atmospheric correction is probably the most critical
element. The conversion of radiance data into surface reflectance in the
visible and near-infrared spectrum is most sensitive to the aerosol
optical depth (τ) and type of aerosol model (Vermote & Vermeulen,
1999). Table 4 demonstrates the sensitivity of the keymodel output (LAI
and Cab) to uncertainties associatedwith τ550 and type of aerosolmodel.
The expected error of the operational MOD/MYD04 aerosol product
(±(0.05+0.15τ)) was assumed in the sensitivity runs to reflect opera-
Table 3
The impact on the 1 m resolution spatial estimates of LAI and Cab as a result of ignoring
intra-field variations in soil reflectance

Aircraft data n Mean r2 RMSD RRMSD [%] Bias [%]

LAI Cab LAI Cab LAI Cab LAI Cab LAI Cab

Entire scene 212,830 2.34 49.1 0.96 0.56 0.25 10.4 10.7 21.2 −9.1 1.0
Validation
sites

31 2.42 44.6 0.88 0.21 0.37 11.5 15.3 25.8 −12.7 5.2

The statistics (see Table 2 for definition of statistical descriptors) describe the
agreement between LAI and Cab spatial datasets (all pixels, n=212,830) generated by
fixing s1 with the initial estimate throughout the corn field and by correcting for pixel-
wise variations in s1, respectively. A negative Bias indicates that dataset values not
corrected for soil background effects underestimates dataset values corrected for
background effects. The agreement of the uncorrected dataset with the ground truth
data (n=31) is also shown. The LAI and Cab data were generated using the input data
listed in Table 1 and a leaf inclination angle of 60°.
tional REGFLEC conditions. Increasing τ550 to 0.31 (reference τ550=0.23)
causes anoverall increase in the LAI estimates (Bias=3.5%) andanoverall
decrease in the Cab estimates (Bias=−3.8%) (Table 4). The relative RMS
deviationbetween the sensitivityand reference run simulations is 8% for
LAI and 10.6% for Cab. The biophysical parameter retrievals are generally
less impacted by running REGFLEC with τ550=0.15 (Table 4). The choice
of aerosol model can be critical particularly for the Cab estimates that
increase by 12.8% if a continental aerosol model is assumed (40%
continental and 60% urban was assumed for the reference conditions)
(Table 4). Evidently, the setting of these parameters is quite important
for accurate retrieval results. The AERONET aerosol optical depth
measurements on the other hand are highly accurate (~0.01 uncer-
tainty) (Holben et al., 1998) and should be used if available.

7. Discussion and conclusions

Robust biophysical parameter retrievals were effectuated using
radiometric information from only 3 spectral bands (green, red and
near-infrared), demonstrating that a few appropriate broad bands can
be adequate for the remote sensing of vegetation biophysical and
biochemical properties. Indeed, the green spectrum (around 550 nm)
is recognized as being optimal for leaf chlorophyll estimation
(Gitelson et al., 1996, 2005; Yoder & Pettigrew-Crosby, 1995), near-
infrared reflectances are highly responsive to changing leaf biomass,
canopy architecture and leaf structure (Kuusk, 2001, Bacour et al.,
2002b), and the red and green reflectance difference primarily res-
ponds to changes in background reflectance and fraction of senescent
vegetation (Fig. 2k and l). Broge and Mortensen (2002) showed that
broadband (satellite-based) VIs were in fact slightly better at esti-
mating LAI and leaf chlorophyll than corresponding narrow-band
hyperspectral versions, and Weiss et al. (2000) found that only a
limited number of wavebands were required to accurately estimate
key canopy biophysical variables.

Remote estimation of leaf chlorophyll (using inverse modeling
techniques) has generally been associatedwith fairly largeuncertainties.
For instance, Jacquemoud et al. (2000) reported accuracies (defined as
themean absolute difference between estimated and measured values)
between 13.1 and 34.5 μg cm−2 when four canopy reflectance models
were inverted with airborne CASI reflectance spectra over corn and
soybean with 2–5 free variables. For sugar beet, RMS deviations on the
order of 10 μg cm−2 were found when using AVIRIS and Landsat TM
reflectance spectra (Jacquemoud et al., 1995). More recently, Botha et al.
(2007) reported overall RMS deviations between 7.97 and 14.12 μg cm−2

for potato cultivars by inverting PROSAIL with field measured
hyperspectral data. Simulation (e.g. Combal et al., 2002a; Koetz et al.,
2005) and experimental studies (Combal et al., 2002b) have demon-
strated that using a priori information significantly improves the
estimation accuracy of vegetation variables. While the use of a priori
knowledge (i.e. canopy type and architecture, model parameter ranges)
is anefficientway to solve ill-posed inverseproblems, this regularization
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technique typically relies on theexistenceof experimentaldata collected
at the site of interest. The additional information content required to
regularize the inversion must be provided by alternative means if the
objective is an entirely image-based method that does not rely on
impractical in-situ data and that can be used for agricultural fields
characterized by widely varying distributions of model variables. The
image-based regularization techniques suggested in this study resulted
in LAI and Cab retrieval accuracies on the order of 10% (relative RMSD).
The method of exploiting the spectral information content of pixels
belonging to the same land cover class was originally proposed by
Atzberger (2004)who reported a significant improvement in estimation
accuracies when using the neighboring radiometric information of the
pixel being inverted to regularize the model inversion. Houborg and
Boegh (2008) reported RMSdeviations of 0.74 for LAI and5.0 μg cm−2 for
Cab using related regularization strategies. The good agreement between
the measured θl and the θl retrieved during the REGFLEC iterative
inversion mode supports simulation results in Atzberger (2004) that
showed that the ‘object-based’ approach reduced confounding effects
between LAI and the leaf inclination angle. It appears that incorporating
spatial (intra-field) reflectance data during model inversion help
regularize the inverse problem and avoid arriving at multiple local
minima caused by the interactive nature of these two geometrical
parameters (Baret & Guyot, 1991; Bacour et al., 2002b).

Limiting the reflectance dataset to represent fairly dense vegetation
pixels causes a decrease in the contribution of the background signal to
the overall scene reflectance and an increase in the total amount of
radiation scattered by plant cells (Daughtry et al., 2000) thereby im-
proving the reliability of vegetation parameter retrievals (Botha et al.,
2007; Baret & Jacquemoud, 1994). However, the NDVI threshold
requirement implies that the biophysical parameters cannot be retrieved
for sparsely vegetatedfieldswith amaximumNDVI less than 0.65. In that
case, image acquisitions at a more extended stage of plant development
may be used to retrieve the field specific parameters (N, Sz and θl),
assumed temporally invariant between the image acquisitions (Houborg
& Boegh, 2008). Alternatively, REGFLEC can be run for sparsely vegetated
fields using default values (Table 1) for N, Sz and θl.

Degradation in model performances is often observed during the leaf
senescence stage (Bacour et al., 2002a; Wang et al., 2005). Verhoef and
Bach (2003) attributed the lack of correspondence between HyMap-
measured and simulated reflectance spectra in the red spectrum to the
presence of yellow or brown leaves in crops assumed to consist of
exclusively green leaves, and Houborg and Boegh (2008) suggested
tasseling or the existence of yellow leaves as plausible reasons for un-
derestimating LAI of a corn crop. The incorporation of the canopy fraction
of senescent leaf material in REGFLEC was found to be important for
matching modeled and measured reflectance spectra for a stressed corn
field. There is a strong relation between fB and the difference between red
andgreen reflectances as increasing the amountof senescent leafmaterial
causes an increase in red relative to green reflectance (Fig. 2). As a result
fB–RGVI relationships were found effective for the delineation of hor-
izontal fB gradients. However, senescent leaf reflectance spectramay vary
significantly between species with variations in the brown pigment
content and leaf mesophyll structure (Section 3). In addition, LAI and soil
background effects (e.g. s1) may confound the retrieval of fB especially at
low vegetation coverage (Fig. 2). Accurate pixel-wise info on s1 is also
critical as variations in background reflectance may confound the de-
tection of relatively subtle differences in canopy reflectance due to
changes in leaf chlorophyll content (Daughtry et al., 2000). Low LAI and
Cab estimation accuracies have been attributed to soil background inter-
ference in a number of studies (Botha et al., 2007; Qu et al., 2007), and the
high LAI and Cab estimation accuracies for LAI ranging from 1.5 to 4 found
in this study were due in part to an effective pixel-wise correction for
background effects.

In summary, the REGFLEC modeling tool that couples leaf optics
(PROSPECT), canopy reflectance (ACRM), and atmospheric radiative
transfer (6SV1) models demonstrated excellent LAI and Cab retrieval
capabilities for a corn field characterized by a wide range in leaf
chlorophylls levels. The results are especially encouraging considering
the highly variable field conditions with intermixing of green and
senescent leaf material and soil background interference. The
generated high-resolution biophysical maps can be of high value in
precision agriculture for detecting vegetation stress and fertilizer need
and for crop management in general. The utility of REGFLEC for
regional scale applications will soon be evaluated. For larger regions a
land cover map is required to divide the image into classes that satisfy
the assumption of spatially invariant leaf mesophyll structure,
vegetation clumping and leaf inclination angle characteristics. The
iterative inverse retrieval of the field/class-specific canopy character-
istics is the most computational part of the model whereas the pixel-
wise computations in the LUT-based inversion mode are much faster.
This makes the computational speed of REGFLEC depend mainly on
the number of land cover classes and not so much on the number of
pixels (image size). Since REGFLEC is entirely image-based and is set
up with wide model parameter ranges, representing diverse agricul-
tural fields it can easily be applied to other environments and species
compositions. Finally, REGFLEC is not sensor-specific but can be run at
a range of spatial and temporal resolutions with radiometric
information from 3 spectral bands available from airborne sensor
systems such as CASI, SpecTIR, and HyMap and operational satellite
sensors such as MODIS, Landsat TM/ETM+, SPOT, and MERIS.
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